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1. Introduction - Histopathology Image

e Challenges of histopathology whole slide images (WSIs)
1. High resolution: Each image can span up to 100,000 x 100,000 pixels.
2. Heterogeneous
m Different tissue types
m Tumor characteristics
m Staining techniques

Different staining techniques

3
WSI patches



1. Introduction - Zero-shot Learning

® Motivation - Lack of task-agnostic model development

1.

2.

Most tumor types under-represented in public datasets or having inadequate samples for
model development.

Developing the slide classifier still requires supervision, which may not be possible for
disease types with small sample sizes.

e Problem - Zero-shot transfer for pathology has not yet been studied

©)

The lack of large-scale, publicly available datasets of paired images and captions in the
highly specialized field of pathology.

Fundamental computational challenges associated with WSIs(High resolution) and do not
routinely come with textual descriptions, bounding box annotations or even region of
interest labels.



1. Introduction - Zero-shot Learning

e Source data: (z°,¥°) [= Training data
e Target data: (zf) =] Testing data

} Different Task

Panda Leopard



1. Introduction - Zero-shot Learning

Training

Representing each class by its attributes.

Hourse
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hoofed | Black-and-white | brindle
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1. Introduction - Zero-shot Learning

Testing

Find the class with the most similar attributes.

Database
hoofed | Black-and-white | brindle
Hourse o X X
Panda X o X
Leopard X X o
Zebra o o o




1. Introduction - Zero-shot Learning

f(x1) D(Hourse) = (1, 0, 0)

f(xt) |

f(x2)

D(Panda) = (0, 1, 0)

O
D(Zebra)=(1, 1, 1)

f(x3) D(Leopard) = (0, 0, 1)

f: NN model (img—embedding)
D: Database (class—attributes)




1. Introduction - Zero-shot Learning

) g(Panda)

f(x2

f(x3) g(Leopard)
f(x1) g(Hourse)

o f: NN model (img—embedding)
g: NN model (class—word vector)




2.1. Image caption dataset

e Scraping from publicly available educational resources and incorporating the existing ARCH

dataset [22].
e Perform cleaning and filtering, yielding a highly diverse dataset of 33,480 image-caption

pairs covering a diverse set of tissue sites and morphologies.

e ARCH dataset: containing 15,164 histopathology
image-caption pairs from pathology textbooks and
PubMed research articles.

carcinoma. closely simulating primary spindle cell sarcoma of
bone. B,

10

[22] Jevgenij Gamper and Nasir Rajpoot. Multiple instance captioning: Learning representations from
histopathology text19772 books and articles. CVPR 2021.



2.2. Unsupervised pretraining of unimodal encoders

e While our paired dataset currently represents the largest of its kind in the domain of
histopathology, it is still considerably smaller than MIMIC-CXR [34] (radiology, 217k pairs), LiT
[86], (general, 4B pairs).

e Therefore, we initialize our encoders using pretrained weights before aligning their latent space
using paired examples.

o Text encoders
1. HistPathGPT

e Data: the final diagnosis section of over 550k surgical pathology reports from Massachusetts
General Hospital and over 400k histopathology-relevant PubMed abstracts.
e Model architecture: GPT2-medium [57]
2. BioClinicalBert [2] (biomedical and clinical corpora)
e Data: MIMIC-III v1.4 database
e Model architecture: BERT

3. PubMedBert [23]
e Data: PubMed abstracts
e Model architecture: BERT 11




2.2. Unsupervised pretraining of unimodal encoders

e While our paired dataset currently represents the largest of its kind in the domain of
histopathology, it is still considerably smaller than MIMIC-CXR [34] (radiology, 217k pairs), LiT
[86], (general, 4B pairs).

e Therefore, we initialize our encoders using pretrained weights before aligning their latent space
using paired examples.

o Image encoder
1. ViT-S
e ImageNet pretrained weights
2. CTransPath [77] (CTP)

e SOTA publicly available encoder trained using self-supervised representation learning on a
total of 15.5M unlabeled histopathology image patches.
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2.2. Unsupervised pretraining of unimodal encoders

[2] Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. Publicly available clinical bert embeddings. In Proceedings of the 2nd Clinical
Natural Language Processing Workshop, 2019.
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Jianfeng Gao, and Hoifung Poon. Domain-specific language model pretraining for biomedical natural
language processing. ACM Transactions on Computing for Healthcare (HEALTH), 2021

[34] Alistair EW Johnson, Tom ] Pollard, Seth ] Berkowitz, Nathaniel R Greenbaum, Matthew P Lungren,
Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a deidentified publicly available database of
chest radiographs with free-text reports. Scientific data, 2019.

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 2019

[77] Xiyue Wang, Sen Yang, Jun Zhang, Minghui Wang, Jing Zhang, Wei Yang, Junzhou Huang, and Xiao
Han. Transformer-based unsupervised contrastive learning for histopathological image classification.
Medical Image Analysis, 2022.

[86] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov, and
Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. CVPR, 2022.
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2.3. Aligning vision and language embeddings.

e Align the latent space of our visual and language
encoders using the cross-modal contrastive loss
formulated as a temperature scaled M-way
classification, where M is the global batch-size of
image-text pairs participating in the loss
computation.

e Given a batch of M paired image and text
samples {(Xm,tm)}m=1,. M.

foamy macrophages,
papillary renal cell
carcinoma.

vulvar melanoma. The
neoplastic cells have
enlarged nuclei with ...
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with scattered bizarre
lipoblasts containing ...

sentinel lymph node
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subcapsular nodal
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2.3. Aligning vision and language embeddings.

e {2-normalized visual and text embeddings are

computed via the visual and text encoders e
J(:0) and 9(;®) respectively as |Um IIf(iﬁﬂll

() ’
and(Vim = (%, @)1

foamy macrophages,
papillary renal cell
carcinoma.

The two directions of contrastive learning are
viewed as symmetric and used jointly to

vulvar melanoma. The

neoplastic cells have

enlarged nuclei with ...

optimize the model during training, where t is a
temperature parameter:
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2.3. Aligning vision and language embeddings.

e {2-normalized visual and text embeddings are
g
computed via the visual and text encoders
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2.3. Aligning vision and language embeddings.

e {2-normalized visual and text embeddings are
g
computed via the visual and text encoders
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2.4. Zero-shot transfer for image classification.

e We briefly describe the prompt-based approach to zero-shot classification popularized by
CLIP[55].
e For each class of interest, a prompt has two COMDADEILS - hosr i
o the classname (e.g. "dog")

o the template (e.g. "A photo of a {}.") ‘ B
= "A photo of a dog." B ption o8 et W
a : Encoder
//
/
(3) Use for zero-shot prediction \ v \ 4 \ 4
T] T2 T3 TN
IEI:::z%zr —>» L LTy | T (LT3 | L | I Ty

|

A photo of
a

[55] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural lancuage supervision. ICML. PMLR. 2021.



2.5. Zero-shot transfer for gigapixel WSIs.

e Key challenges in performing zero-shot transfer for WSIs
1. High resolution: It’s intractable to directly compute an embedding vector using the image encoder.
2. Heterogeneous: Various tissue and cell types that can interact to form higher level architectures of
both normal and diseased morphological patterns.

e We propose MI-Zero, a zero-shot transfer framework for classifying WSIs inspired by the success
of multiple instance learning (MIL) for solving weakly-supervised learning tasks.

e The approach entails first dividing each WSI (called bags) into smaller tiles (called instances)
more amenable to processing via our image encoder.

£ ™ \z VT A
» % . I ¢~. ( SRS ha s > %
Nﬁ%’ Crop - Model Aggregation , \,, 4
patches g W L) Predict ,ﬂl f;\i‘. 4‘ (e.g. topk, k=2)" / 0.7
‘-“3\"" T i
Patches Instances M WSI 19
WSl(bags) (instances) predict scores predict scores



2.5. Zero-shot transfer for gigapixel WSIs.

o {u;}i—1,.. .~n:the embeddings of each patch, where N varies depending on how large each WSI is.

° {Wm}mzl ...C : the prompt embeddings of each class, where C is the total number of classes.

o {siti=1,.n the cosine similarity scores between each patch embedding and prompt embeddings
_where Si =W Fwy, wa, ..., w(

..

—_—
Image Encoder
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— 256 px —
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2.5. Zero-shot transfer for gigapixel WSIs.

e (*):any permutation invariant operator to produce the slide-level prediction scores, such as
mean operator, topK max pooling operator , where $ = {si}i=1,..,.n ,
topk = 157 }i=1...K is the set of the K largest score values from S for class c

K K
Image Encoder htopK (S) — E : S E : S

— 256 px —
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|
carcinoma}.
: ‘ Text 0 ! ‘ squamous cell
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.
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W
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2.5. Zero-shot transfer for gigapixel WSIs.

e Inthe graph-based representation, we take into account the spatial positions of each patch.

1.

Build a directed KNN graph G = {M, E} connecting each patch (node) to its spatial neighbors,
where the value at node ? is its scores Si,

We spatially smooth (e.g. average) the score values, by replacing Si with hmean (Sneighbors)

, where Sneighbors = {S; 1 J € {i}UN (i)} and N (i) ={J : (1,7) € E}for each node %in the
graph.

Applying one of the permutation invariant pooling operators to the set of smoothed scores
in the graph, ©smoothed | and arrive at the slide-level prediction scores.

e Note that this is equivalent to applying a mean-filter with the receptive field size covering each
patch’s k-nearest neighbors.
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4.1. Downstream datasets

e Zero-shot transfer performance for cancer subtype classification was evaluated on 3 Whole Slide
Image (WSI) datasets from Brigham and Women's Hospital.

e We used in-house independent datasets for zero-shot transfer evaluation to avoid
information leakage.

Dataset # of WSIs # of types
Independent BRCA 200 2
Independent NSCLC 200 2

Independent RCC 150 3

23



4.2. Supervised baselines

Supervised baselines: weakly-supervised attention-based MIL (ABMIL) [30]

e Trainset: publicly available TCGA cohort of each task(~1000 WSIs each).

e Due to the relatively small size of these datasets we follow the study design of other weakly-
supervised classification studies by performing 5-fold Monte Carlo cross-validation.

e Each cross-validation training set includes on average 836 slides for BRCA, 838 for NSCLC, and
739 for RCC.

24
[30] Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learning.

ICML. PMLR, 2018.



4.3. Zero-shot transfer

e Zero-shot evaluation methodology

O

©)

Due to the reliance on prompts for zero-shot
transfer, evaluation results vary with the choice
of class names and prompt templates.
For each task, we first curate a pool of relevant
prompt templates and classnames. We then
evaluate each model configuration on each task
by randomly sampling 50 prompts and
measuring the performance of each prompt.

16 prompt templates:

m CLASSNAME.

a photomicrograph showing CLASSNAME.
a photomicrograph of CLASSNAME.
an image of CLASSNAME.

an image showing CLASSNAME.
an example of CLASSNAME.

o class names

Task ‘ Class | Class names
IDC invasive ductal carcinoma
BRCA carcinoma of the breast, ductal pattern

‘ILC

invasive lobular carcinoma
carcinoma of the breast, lobular pattern

adenocarcinoma

lung adenocarcinoma

adenocarcinoma of the lung

pulmonary adenocarcinoma

LUAD adenocarcinoma, lepidic pattern
adenocarcinoma, solid pattern

NSCLC adenccarcinoma, micropapillary pattern
adenocarcinoma, acinar pattern
adenocarcinoma, papillary pattern

squamous cell carcinoma

LUSC lung squamous cell carcinoma
squamous cell carcinoma of the lung
pulmenary squamous cell carcinoma

clear cell renal cell carcinoma

renal cell carcinoma, clear cell type

renal cell carcinoma of the clear cell type
clear cell RCC

CCRCC

papillary renal cell carcinoma

renal cell carcinoma, papillary type

renal cell carcinoma of the papillary type
papillary RCC

RCC | prec

chromophobe renal cell carcinoma
renal cell carcinoma, chromophobe type
renal cell carcinoma of the chromophobe type

chromeophobe RCC 25

CHRCC




4.3. Zero-shot transfer

Zero-shot transfer for WSIs

o

o

Image encoder: CTP
SS: spatial smoothing

Model | Text Encoder & Pretraining SS ‘ Pooling H BRCA NSCLC RCC | Average
| ABMIL (1% Data) None X | attention || 0.510 0.709  0.557 0.592 |

ABMIL (100% Data) | None X | attention || 0.843 0.893  0.855 0.864
HistPathGPT (None) X | topK 0.625 0.680  0.653 0.653
MI-Zero (Ours) HistPathGPT (In-domain) X | topK 0.673 0.700  0.733 0.702
e PubmedBert (Out-of-domain) X | topK 0.570 0.693 0.777 0.680
BioclinicalBert (Out-of-domain) | X | topK 0.660 0.742  0.697 0.700
HistPathGPT (None) v | topK 0.623 0.700  0.653 0.659
MIZero (Ours) HistPathGPT (In-domain) v | topK 0.615 0.705 0.733 0.684
~EET0 (SIS PubmedBert (Out-of-domain) v | topK 0577 0725 0760 | 0.688
BioclinicalBert (Out-of-domain) | « | topK 0.660 0.770  0.663 0.698
HistPathGPT (None) X | mean 0.655 0.593  0.577 0.608
MI-Zero (Ours) HistPathGPT (In-domain) X | mean 0.620 0.590 0.633 0.614
PubmedBert (Out-of-domain) X | mean 0.585 0.650  0.727 | 0.654
BioclinicalBert (Out-of-domain) | X | mean 0.672 0.680  0.543 0.632
HistPathGPT (None) v/ | mean 0.655 0595 0573 0.608
MIZero (Ours) HistPathGPT (In-domain) v | mean 0.625 0.590  0.637 0.617
~4ero fUurs PubmedBert (Out-of-domain) v | mean 0.587  0.650 0.730 | 0.656
BioclinicalBert (Out-of-domain) | ¢ | mean 0.675 0.682  0.543 0.634
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4.3. Zero-shot transfer

Zero-shot transfer for WSIs

o

o

Image encoder: CTP
SS: spatial smoothing

Model | Text Encoder & Pretraining SS ‘ Pooling H BRCA NSCLC RCC | Average
ABMIL (1% Data) None X | attention || 0.510 0.709  0.557 0.592
ABMIL (100% Data) | None X | attention || 0.843 0.893  0.855 0.864
HistPathGPT (None) X | topK 0.625 0.680  0.653 0.653
MI-Zero (Ours) HistPathGPT (In-domain) X | topK 0.673 0.700  0.733 0.702
“oero PubmedBert (Out-of-domain) X | topK 0.570 0.693 0.777 0.680
BioclinicalBert (Out-of-domain) | X | topK 0.660 0.742  0.697 0.700
HistPathGPT (None) v | topK 0.623 0.700  0.653 0.659
MIZero (Ours) HistPathGPT (In-domain) v | topK 0.615 0.705 0.733 0.684
~EET0 (SIS PubmedBert (Out-of-domain) v | topK 0577 0725 0760 | 0.688
BioclinicalBert (Out-of-domain) | « | topK 0.660 0.770  0.663 0.698
HistPathGPT (None) X | mean 0.655 0.593  0.577 0.608
MI-Zero (Ours) HistPathGPT (In-domain) X | mean 0.620 0.590 0.633 0.614
PubmedBert (Out-of-domain) X | mean 0.585 0.650  0.727 | 0.654
BioclinicalBert (Out-of-domain) | X | mean 0.672 0.680  0.543 0.632
HistPathGPT (None) v/ | mean 0.655 0595 0573 0.608
MIZero (Ours) HistPathGPT (In-domain) v | mean 0.625 0.590  0.637 0.617
~4ero fUurs PubmedBert (Out-of-domain) v | mean 0.587  0.650 0.730 | 0.656
BioclinicalBert (Out-of-domain) | ¢ | mean 0.675 0.682  0.543 0.634

27



4.3. Zero-shot transfer

e Zero-shot transfer for WSIs
o Red dashed line: ABMIL trained on 100% of training data.

o Blue dashed line: ABMIL trained on 1% of training data.
o  HP-GPT: HistoPathGPT
o P-Bert: PubMedBert
o  B-Bert: BioClinicalBert
10 E r:neag pool BRCA subtyping NSCLC subtyping RCC subtyping

o o
L= [+

Balanced Accuracy
o
S

| o
(=}

4
©

Balanced Accuracy
o
D




4.3. Zero-shot transfer

e Visualization of similarity scores.

CHRCC

CCRCC
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4.4. Ablation study

Training data comparison

©)

©)

OpenATI’s CLIP model [55]
m Trained on 400M generic imagetext pairs.
ARCH (7,562 pathology pairs) [22]
m A subset of our training data (33,480 pathology pairs).

Dataset | BRCA NSCLC RCC | Average
CLIP[55] | 0500 0500 0333 | 0444
ARCH [22] 0625 0593 0540 | 0.586
Ours 0.672  0.700 0.733 |  0.702

[55] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. ICML. PMLR, 2021.

[22] Jevgenij Gamper and Nasir Rajpoot. Multiple instance captioning: Learning representations from
histopathology text19772 books and articles. CVPR 2021.
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4.4. Ablation study

e Image encoder pretraining

O

CTransPath [77] (CTP)
SOTA publicly available encoder trained using self-supervised representation learning
on a total of 15.5M unlabeled histopathology image patches.

Image Encoder | Text Encoder ‘ Image Pretraining ‘ Text Pretraining | BRCA NSCLC RCC | Average
|CTP HistPathGPT | SSL In-domain 0.672 0.700 0.733 0.702
ViT-S HistPathGPT | SSL In-domain 0.617 0.625 0.673 0.639
ViT-S HistPathGPT | ImageNet In-domain 0.660 0.525  0.600 0.595
lcTP HistPathGPT | None None 0535 0520 0.297 | 0.451
VIT-S HistPathGPT | None None 0.500 0.510 0.290 0.433

[77] Xiyue Wang, Sen Yang, Jun Zhang, Minghui Wang, Jing Zhang, Wei Yang, Junzhou Huang, and Xiao
Han. Transformer-based unsupervised contrastive learning for histopathological image classification.
Medical Image Analvsis. 2022.




4.4. Ablation study

e Locked-image tuning (LiT)

o Zhai et al. [86] recently showed
that “locking” a well-pretrained
image encoder outperforms its
unlocked counterpart during
contrastive tuning.

[86] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov, and

Text Encoder & Pretraining | LIT | SS | Pooling ‘ BRCA NSCLC RCC | Average
HistPathGPT (In-domain) f, X | topK ‘ gggg gg(—;)g 832{3; g;%
PubMedBen Oueofdomsin) | % | % [wpk | 0300 (e BT OO
BioClinicalBert (Out-of-domain) “’; X | topK ‘ 3222 ng;‘§ 8:233 8;2(1}
i A R I R e
PubMedBert (Out-of-domain) :\(’ v | topK ‘ gggg gzgg gzgt’; 8223
BioClinicalBert (Out-of-domain) :’; v | topK ‘ gggg ggg 823; gggg
bGP ndomain | 7| x [ men | GO0 050 OO0 060
PubMedBert (Out-of-domain) 5, X | mean ‘ gggg ggg{—; g;ig gsﬁgg
BioClinicalBert (Out-of-domain) f, X | mean ‘ 323 gj§§'§ 8§§§ 8?33
HibahGPT Gnedomain) | | o [ men | G808 030 000 | 05
PubMedBert (Out-of-domain) 5, v | mean ‘ ggg; ggzg g;gg gsﬁgg
BioClinicalBert (Out-of-domain) :(, v' | mean ‘ gg’llg ggg? 8;;1; 82?2

Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. CVPR, 2022.
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4.5. Conclusion

® MI-Zero: The first method for zero-shot transfer in pathology.

e Future directions
o Collect additional image caption datasets.
o Explore methods that may improve the sample efficiency of visual language pretraining.
o Evaluate on a large and diverse set of computational pathology benchmarks.
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Thanks For Listening !
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